Environmental Engineering Technology

(Bachelor of Science)

Accreditation

The Environmental Engineering Technology program is accredited by the Engineering Technology Accreditation Commission (ETAC) of ABET, www.abet.org.

UW-Green Bay Engineering Technology

Combine hands-on learning with academic coursework and get ready for high-demand jobs in the growing field of engineering technology. The University partners with regional leaders and technical colleges so that you will be prepared for an ever-changing industry. Get the technical skills that will make you an expert and the critical-thinking skills that will make you indispensable.

Engineering Technology Mission

All of the Engineering Technology programs (Electrical, Mechanical and Environmental) include a strong liberal arts base along with a number of handson experiences, including a capstone experience or internship that often will be working with businesses and organizations within the community.

Environmental Engineering Technology

Environmental engineering technology is the application of engineering principles and interdisciplinary environmental sciences to address challenges associated with human impacts on the environment. This field characterizes the dynamic relationship between human activity and the environment to determine strategies to minimize negative impacts. Career opportunities as an environmental engineering technologist vary greatly including municipal and industrial treatment facility technologists, laboratory and environmental quality technicians, health and safety managers, environmental consultants, and sustainability managers for industry and governmental agencies.

The Bachelor of Science (B.S.) degree in Environmental Engineering Technology at UW-Green Bay is an interdisciplinary program that prepares students for careers in applied environmental engineering using critical problem solving skills needed in regional and national industries, manufacturing, governmental, and engineering services firms. The focus of the program is the application of engineering principles to the solution of practical problems. Students will develop skills in hands on applications and interdisciplinary coursework in engineering, mathematics, geoscience, chemistry, physics, and biology applied to a variety of environmental challenges. Students examine the effects of pollution on humans and ecosystems, form strategies to improve processes to prevent or minimize negative effects, and develop sustainable solutions to using available resources. Teamwork, technical writing, and project management are also emphasized throughout the curriculum. The goal of the major is to develop well rounded engineering technologists that can adapt and succeed in a highly competitive workplace.

Students will benefit from relationships with local technical colleges and local industry to complete a B.S. in engineering technology in the Northeast Wisconsin area. Students may start earning their degree at UW-Green Bay or local technical colleges to give maximum flexibility in degree completion. In addition, the Northeast Wisconsin Educational Resource Alliance, NEW ERA, has established advisory boards linking leaders in regional industry and participating institutions to the major. Through these relationships students will have many opportunities for internships, co-op experiences, and employment after graduation.

Environmental Engineering Technology Program Learning Outcomes

- 1. Program graduates will be employed as an environmental engineering technologist and perform all functions assigned to an environmental engineering technologist.
- 2. Graduates will apply multidisciplinary approaches including engineering, chemistry, mathematics, physics, geosciences, and biology to manage the unique challenges and balance the competing social, political, economic, and technical goals of environmental problems and solutions.
- 3. Graduates will exhibit a desire for life-long learning through higher education, technical training, teaching, membership in professional societies, and other developmental activities and will achieve positions of increased responsibility through these activities.
- 4. Graduates will demonstrate high levels of oral and written communication skills, critical thinking, responsibility and ethical behavior, and leadership in their careers.
- 5. Graduates will function effectively both as a leader and as a member of project teams and demonstrate an appreciation for diversity.

Contact

For more information contact:

Jagadeep Thota, Ph.D. Chair, Engineering Phone: 920-465-2817 Email: thotaj@uwgb.edu

or

Patricia Terry, Ph.D.

Chair, Richard J. Resch School of Engineering

Phone: 920-465-2749 Email: terryp@uwgb.edu

Major

Code	Title	Credits
Supporting Courses		42
BIOLOGY 201	Principles of Biology: Cellular and Molecular Processes	
BIOLOGY 202	Principles of Biology Lab: Cellular and Molecular Processes	
CHEM 211	Principles of Chemistry I	
CHEM 212	Principles of Chemistry II	
CHEM 213	Principles of Chemistry I Laboratory	
CHEM 214	Principles of Chemistry II Laboratory	
ENGR 236	Technical Writing and Information Literacy	
ET 101	Fundamentals of Engineering Technology	
ET 103	Surveying	
ET 105	Fundamentals of Drawing	
MATH 202	Calculus and Analytic Geometry I	
MATH 203	Calculus and Analytic Geometry II	
MATH 260	Introductory Statistics	
Physics (choose one option):		
PHYSICS 103 & PHYSICS 203	Fundamentals of Physics I and Introductory Physics Lab I	
PHYSICS 201 & PHYSICS 203	Principles of Physics I and Introductory Physics Lab I	
Fundamentals Courses		28
Lower-Level Fundamentals		
CHEM 207	Laboratory Safety	
ENV SCI 250	Introduction to Geographic Information Systems (GIS)	
ENV SCI 320	The Soil Environment	
ET 201	Introduction to Environmental Engineering	
ET 203	Introduction to Water and Waste Water	
MET 218	Fluid Mechanics	
Upper-Level Fundamentals		
BIOLOGY 322	Environmental Microbiology	
ET/ENV SCI 330	Hydrology	
GEOSCI 202	Physical Geology	
Advanced Courses		9
ET 360	Project Management	
ET/ENV SCI 334	Solid Waste Management	
ET 331	Advanced Water and Waste Water Treatment	
Capstone Requirement		3
ET 400	Co-op/Internship in Engineering Technology	
or ET 410	Capstone Project	
Electives (choose three courses):		9
ECON 305	Environmental Economics	
ENV SCI 305	Environmental Fate and Transport	
ENV SCI 433	Ground Water: Resources and Regulations	
ET/ENV SCI 415	Solar and Alternate Energy Systems	

21-22

Total Credits		91
WATER 444	Aqueous Geochemistry	
GEOSCI 432	Hydrogeology	
ET 464	Atmospheric Pollution and Abatement	
ET 430	Sustainable Agricultural Management	
ET/ENV SCI 424	Hazardous and Toxic Materials	

Minor

Code	Title	Credits
Supporting Courses		9
ET 103	Surveying	
ET 201	Introduction to Environmental Engineering	
ET 203	Introduction to Water and Waste Water	
Upper-Level Courses		
Required		3
ET 331	Advanced Water and Waste Water Treatment	
or ENV SCI 335	Water and Waste Water Treatment	
Electives: Complete ane 3 courses	s	9-10
ENV SCI 305	Environmental Fate and Transport	
ENV SCI 433	Ground Water: Resources and Regulations	
ET 334	Solid Waste Management	
ET 424	Hazardous and Toxic Materials	
ET 430	Sustainable Agricultural Management	
ET 464	Atmospheric Pollution and Abatement	
GEOSCI 432	Hydrogeology	
WATER 410	Agriculture-Water Nexus in Wisconsin	
WATER 411	Agriculture-Water Nexus Field Experience	
WATER 444	Aqueous Geochemistry	

Curriculum Guide

Total Credits

The following curriculum guide is for a four-year **Environmental Engineering Technology** degree program and is subject to change without notice. Students should consult their program advisor to ensure that they have the most accurate and up-to-date information available. This program is accredited by the Engineering Technology Accreditation Commission (ETAC) of ABET, www.abet.org.

Total 121 credits necessary to graduate.

Course	Title	Credits
Freshman		
Fall		
ET 101	Fundamentals of Engineering Technology	2
BIOLOGY 201	Principles of Biology: Cellular and Molecular Processes	3
BIOLOGY 202	Principles of Biology Lab: Cellular and Molecular Processes	1
CHEM 207	Laboratory Safety	1
CHEM 211	Principles of Chemistry I	4
CHEM 213	Principles of Chemistry I Laboratory	1
MATH 202	Calculus and Analytic Geometry I	4
	Credits	16
Spring		
CHEM 212	Principles of Chemistry II	4
CHEM 214	Principles of Chemistry II Laboratory	1
MATH 203	Calculus and Analytic Geometry II	4
First Year Seminar		3
General Ed		3
	Credits	15

Credits

4 Environmental Engineering Technology

Sophomore		
Fall		
ET 103	Surveying	3
ET 105	Fundamentals of Drawing	3
ET 201	Introduction to Environmental Engineering	3
ET 203	Introduction to Water and Waste Water	3
PHYSICS 103	Fundamentals of Physics I	4
or PHYSICS 201	or Principles of Physics I	
PHYSICS 203	Introductory Physics Lab I	1
	Credits	17
Spring		
BIOLOGY 322	Environmental Microbiology	4
GEOSCI 202	Physical Geology	4
MATH 260	Introductory Statistics	4
ENGR 236	Technical Writing and Information Literacy	3
	Credits	15
Junior		
Fall		
ENV SCI 320	The Soil Environment	4
ET 330	Hydrology	3
ET 391	GIS	3
General Ed		3
General Ed		3
-	Credits	16
Spring		
ET 331	Advanced Water and Waste Water Treatment	3
ET 334	Solid Waste Management	3
MET 218	Fluid Mechanics	3
General Ed		3
General Ed		3
	Credits	15
Senior		
Fall		
ET 360	Project Management	3
Elective I	, ,	3
Elective II		3
General Ed		3
General Ed		3
	Credits	15
Spring	4104110	13
ET 400	Co-op/Internship in Engineering Technology	3
or ET 410	or Capstone Project	3
Elective III		3
General Ed		3
General Ed		3
	Credits	12
	Total Credits	121
	i otal ordana	121

Faculty

Patricia A Terry; Professor; Ph.D., University of Colorado*

Michael Holly; Associate Professor; Ph.D., University of Wisconsin - Madison*

Kpoti (Stefan) Gunn; Assistant Professor; Ph.D., Ohio State University, chair*