Mechanical Engineering

(Bachelor of Science)

UW-Green Bay Engineering

One of the fastest-growing regions in the state and the Midwest for engineering jobs, Northeast Wisconsin will see tremendous growth in the need for and recruitment of new engineers. This region has the most open positions for engineers in the state and has seen an 18% increase in demand for engineers since 2010. Engineering as a career focuses on theoretical aspects of mathematical, scientific and engineering principals. New professionals with a Bachelor of Science in Mechanical Engineering from UW-Green Bay will be perfectly-timed and well-prepared to meet the swell in demand for engineers, leading to high-paying, rewarding careers in some of the region's most sought after employers.

Mechanical Engineering

The University of Wisconsin-Green Bay is proud to be home of the only Mechanical Engineering program in Northeast Wisconsin. Part of the College of Science, Engineering and Technology (CSET) and offered through the (https://www.uwgb.edu/mechanical-engineering/stem-center/)Richard J. Resch School of Engineering (RSE), the Bachelor of Science (B.S.) in Mechanical Engineering is designed as a cutting-edge program that will offer students individualized attention from award-winning professors, a hands-on education with state-of the-art equipment, and opportunities for research and internships with some of the largest companies and employers in the region. The UW-Green Bay Mechanical Engineering program is housed in the newly constructed STEM Innovation Center building.

Mechanical engineering is a diverse and flexible engineering discipline. Mechanical engineers work in number of fields including design of machinery, controls, vibrations and acoustics, power generation, renewable energy, energy conservation, fluid flow and heat transfer applications, and air-conditioning. The program synthesizes math, science, engineering science, and engineering design. The program provides electives in several general areas, including thermal-sciences, mechanical design and manufacturing, robotics and automation, mechanical and environmental systems, and renewable energy. Students begin the practice of design in their freshman year and integrate it throughout their programs which culminate in a team-oriented capstone design project in the senior year. The program is geared to prepare students for the lifelong practice of mechanical engineering and for immediate entry to positions in industry or further studies in graduate schools.

Students will benefit from relationships with local technical colleges, and local industry to complete a B.S. in engineering in the Northeast Wisconsin area. Students may start earning their degree at UW-Green Bay or local technical colleges to give maximum flexibility in degree completion. In addition, the Northeast Wisconsin Educational Resource Alliance, NEW ERA, has established advisory boards linking leaders in regional industry and participating institutions to the major. Through these relationships students will have many opportunities for internships, co-op experiences, and employment after graduation.

Contact

For more information contact:

Patricia Terry, Ph.D. Chair, Richard J. Resch School of Engineering Phone: 920-465-2749 Email: terryp@uwgb.edu

Major

Code	Title	Credits
Supporting Courses		40
WF 100	First Year Writing	
MATH 202	Calculus and Analytic Geometry I	
MATH 203	Calculus and Analytic Geometry II	
MATH 260	Introductory Statistics	
MATH 209	Multivariate Calculus	
MATH 305	Ordinary Differential Equations	
CHEM 211	Principles of Chemistry I	
& CHEM 212	and Principles of Chemistry II	
& CHEM 213	and Principles of Chemistry I Laboratory	
& CHEM 214	and Principles of Chemistry II Laboratory	
or ET 206	Chemistry for Engineers	
ET 207	Parametric Modeling	
ENGR 104	Engineering Graphics	

Total Credits		93
ENGR 432	Automatic Controls	
ENGR 422	Machine Component Design II	
ENGR 344	Mechanical Vibration	
ENGR 334	Industrial Decision Processes	
ET 415	Solar and Alternate Energy Systems	
ET 400	Co-op/Internship in Engineering Technology	
ET 390	Mechatronics	
ET 360	Project Management	
Technical Electives: (cho	oose three courses)	9
ENGR 460	Senior Design	
ENGR 431	Thermal Lab	
ENGR 430	Heat Transfer	
ENGR 420	Machine Component Design I	
ENGR 408	Finite Element Analysis	
ENGR 340	Analysis of Dynamic Systems	
ENGR 337	Fluids Lab	
ENGR 336	Fluids	
ENGR 324	Engineering Thermodynamics	
Advanced Courses:		23
ENGR 322	Engineering Measurements Lab	
ENGR 312	Engineering Measurements	
ENGR 308	Electrical and Electronic Circuits	
ENGR 221	Mechanics of Materials Lab	
ENGR 220	Mechanics of Materials	
ENGR 216	Basic Manufacturing Processes	
ENGR 214	Mechanics II	
ENGR 213	Mechanics I	
ENGR 201	Engineering Materials	
Fundamentals Courses:		21
PHYSICS 202	Principles of Physics II	
ENGR 326	Numerical Methods	
ENGR 204	Programming for Engineers	

Curriculum Guide

The following curriculum guide is for a four-year Mechanical Engineering degree program and is subject to change without notice. Students should consult their program advisor to ensure that they have the most accurate and up-to-date information available.

Total 123 credits necessary to graduate.

Course	Title	Credits
Freshman		
Fall		
MATH 202	Calculus and Analytic Geometry I	4
ET 206	Chemistry for Engineers	4
WF 100	First Year Writing	3
ENGR 104	Engineering Graphics	1
First Year Seminar (FYS)		3
	Credits	15
Spring		
MATH 203	Calculus and Analytic Geometry II	4
ENGR 204	Programming for Engineers	2
ET 207	Parametric Modeling	2

MATH 260	Introductory Statistics	4
General Education		3
	Credits	15
Sophomore		
Fall		
MATH 209	Multivariate Calculus	4
ENGR 201	Engineering Materials	2
ENGR 213	Mechanics I	3
General Education		3
General Education		3
Spring	Credits	15
Spring ENGR 214	Mechanics II	3
ENGR 216	Basic Manufacturing	3
	Processes	5
ENGR 220	Mechanics of Materials	3
ENGR 221	Mechanics of Materials	1
	Lab	
General Education		3
General Education		3
	Credits	16
Junior		
Fall		_
PHYSICS 202	Principles of Physics II	5
MATH 305	Ordinary Differential Equations	4
ENGR 326	Numerical Methods	3
ENGR 308	Electrical and Electronic	3
	Circuits	-
	Credits	15
Spring		
Technical Elective I		3
ENGR 312	Engineering	2
	Measurements	
ENGR 322	Engineering Measurements Lab	1
ENGR 324	Engineering	3
	Thermodynamics	
ENGR 340	Analysis of Dynamic	3
	Systems	
General Education		3
	Credits	15
Senior		
Fall		0
Technical Elective II	Thida	3
ENGR 336 ENGR 337	Fluids Fluids Lab	3
ENGR 408	Finite Element Analysis	3
ENGR 420	Machine Component	3
	Design I	0
General Education		3
	Credits	16
Spring		
Technical Elective III		3
ENGR 430	Heat Transfer	3
ENGR 431	Thermal Lab	1
ENGR 460	Senior Design	3
General Education		3
General Education		3
	Credits	16
	Total Credits	123

Technical Electives (choose any three):

- 1. ENGR 344 Mechanical Vibration (3 s.h.)
- 2. ET 385 Robotics (3 s.h.)
- 3. ET 390 Mechatronics (3 s.h.)
- 4. ENGR 422 Machine Component Design II (3 s.h.)
- 5. ENGR 432 Automatic Controls (3 s.h.)
- 6. ENGR 334 Industrial Decision Processes (3 s.h.)
- 7. ET 360 Project Management (3 s.h.)
- 8. ET 400 Co-op/Internship in Engineering Technology (3 s.h.)
- 9. ET 415 Solar and Alternate Energy Systems (3 s.h.)

Faculty

John F Katers; Professor; Ph.D., Marquette University* Patricia A Terry; Professor; Ph.D., University of Colorado, chair* Maruf Hossain; Associate Professor; Ph.D., University of Memphis Mohammad Mahfuz; Associate Professor; Ph.D., University of Ottawa Jagadeep Thota; Associate Professor; Ph.D., University of Nevada - Las Vegas Riaz Ahmed; Assistant Professor; Ph.D., University of South Carolina Kpoti (Stefan) Gunn; Assistant Professor; Ph.D., Ohio State University Michael Holly; Assistant Professor; Ph.D., University of Wisconsin - Madison Md Rasedul Islam; Assistant Professor; Ph.D., University of Wisconsin - Madison Jian Zhang; Assistant Professor; Ph.D., Mississippi State University Taskia Ahammad Khan; Lecturer; M.S., Bradley University Nabila Rubaiya; Lecturer; M.S., University of Wisconsin - Milwaukee