Electrical Engineering

(Bachelor of Science)

UW-Green Bay Engineering

One of the fastest-growing regions in the state and the Midwest for engineering jobs, Northeast Wisconsin will see tremendous growth in the need for and recruitment of new engineers. This region has the most open positions for engineers in the state and has seen an 18% increase in demand for engineers since 2010. Engineering as a career focuses on theoretical aspects of mathematical, scientific and engineering principals. New professionals with a Bachelor of Science in Electrical Engineering from UW-Green Bay will be perfectly-timed and well-prepared to meet the swell in demand for engineers, leading to high-paying, rewarding careers in some of the region's most sought after employers.

Electrical Engineering

The University of Wisconsin-Green Bay is proud to announce the newest engineering program in Northeast Wisconsin, the Electrical Engineering program. Part of the College of Science, Engineering and Technology (CSET) and offered through the Richard J. Resch School of Engineering (RSE), the Bachelor of Science (B.S.) in Electrical Engineering is designed as a cutting-edge program that will offer students individualized attention from award-winning professors, a hands-on education with state-of the-art equipment, and opportunities for research and internships with some of the largest companies and employers in the region.

Electrical engineering is the application of scientific and mathematical principles to the design, manufacture, and control of structures, machines, processes, and systems. In the past, the work of electrical engineers has had a direct and vital impact on people's lives. Electrical engineers have been responsible for the creation of electric power, modern electronics, computers, electronic communication systems, modern flight controllers, automated manufacturing, and medical diagnostic tools. An electrical engineering education continues to provide opportunities for solving problems of great social significance and for increasing people's quality of life. The electrical engineering program spans the disciplines of electronics, computers, circuits, electromagnetic fields, power systems, controls, communications, and signal processing.

Students will benefit from relationships with local technical colleges, and local industry to complete a B.S. in engineering in the Northeast Wisconsin area. Students may start earning their degree at UW-Green Bay or local technical colleges to give maximum flexibility in degree completion. In addition, the Northeast Wisconsin Educational Resource Alliance, NEW ERA, has established advisory boards linking leaders in regional industry and participating institutions to the major. Through these relationships students will have many opportunities for internships, co-op experiences, and employment after graduation.

Contact

For more information contact:

Patricia Terry, Ph.D. Chair, Richard J. Resch School of Engineering Phone: 920-465-2749 Email: terryp@uwgb.edu

Major

Code	Title	Credits
Supporting Courses:		38
WF 100	First Year Writing	
MATH 202	Calculus and Analytic Geometry I	
MATH 203	Calculus and Analytic Geometry II	
MATH 209	Multivariate Calculus	
MATH 260	Introductory Statistics	
MATH 305	Ordinary Differential Equations	
PHYSICS 201	Principles of Physics I	
CHEM 211	Principles of Chemistry I	
& CHEM 212	and Principles of Chemistry II	
& CHEM 213	and Principles of Chemistry I Laboratory	
& CHEM 214	and Principles of Chemistry II Laboratory	
or ET 206	Chemistry for Engineers	
ET 105	Fundamentals of Drawing	
ET 142	Introduction to Programming	
Fundamental Courses:		22

ENGR 120	Electrical Circuits I	
ENGR 121	Electrical Circuits I Lab	
ENGR 210	Electrical Circuits II	
ENGR 211	Electrical Circuits II Lab	
ENGR 222	Electronic Devices	
ENGR 223	Electronic Devices Lab	
ENGR 224	Electrical Codes, Safety, and Standards	
ENGR 320	Energy Conversion	
ENGR 321	Energy Conversion Lab	
ENGR 328	Microcontrollers and Programmable Logic Controllers	
ENGR 329	Microcontrollers and Programmable Logic Controllers Lab	
Advanced Courses:		23
ENGR 310	Digital Logic Design	
ENGR 311	Digital Logic Design Lab	
ENGR 342	Signals and Systems	
ENGR 343	Signals and Systems Lab	
ENGR 346	Electrical Power Systems	
ENGR 348	Electromagnetic Fields and Applications	
ENGR 412	Communications Systems	
ENGR 434	Power Electronics	
ENGR 462	Senior Design Project (capstone requirement)	
Technical Electives: (choose four courses)		12
ET 342	Supervisory Control and Data Acquisition	
ET 400	Co-op/Internship in Engineering Technology	
ET 415	Solar and Alternate Energy Systems	
ENGR 334	Industrial Decision Processes	
or ET 360	Project Management	
ENGR 402	Smart Cities: Engineering the Future	
ENGR 414	Power System Analysis and Protection	
ENGR 426	Wireless Communications	
ENGR 428	Wireless Networks	
ENGR 438	Microprocessors and Embedded Systems	
ENGR 493	Special Topics in Electrical Engineering	

Total Credits

Curriculum Guide

The following curriculum guide is for a four-year **Electrical Engineering** degree program and is subject to change without notice. Students should consult their program advisor to ensure that they have the most accurate and up-to-date information available.

Total **125** credits necessary to graduate.

Course	Title	Credits
Freshman		
Fall		
MATH 202	Calculus and Analytic Geometry I	4
ET 105	Fundamentals of Drawing	3
WF 100	First Year Writing	3
First Year Seminar (FYS)		3
General Education		3
	Credits	16
Spring		
MATH 203	Calculus and Analytic Geometry II	4
ENGR 120	Electrical Circuits I	3

ENGR 121	Electrical Circuits I Lab	1
ET 142	Introduction to	3
Conoral Education	Programming	2
	Crodite	3
Sonhomore	Cleans	14
Fall		
MATH 209	Multivariate Calculus	4
PHYSICS 201	Principles of Physics I	5
FT 206	Chemistry for Engineers	4
ENGR 210	Electrical Circuits II	3
ENGR 211	Electrical Circuits II Lab	1
	Credito	17
Series	Credits	17
Spring	Introductory Ctatistics	4
MATH 200	Introductory Statistics	4
ENGR 222	Electronic Devices	3
ENGR 223	Electronic Devices Lab	1
ENGR 224	Electrical Codes, Safety,	2
	Energy Conversion	2
	Energy Conversion	3
ENGR 32 I	Energy Conversion Lab	1
	0 ""	3
	Credits	17
Junior		
Fall		
MATH 305	Ordinary Differential	4
ENCP 210	Digital Logic Docign	2
		3
	Signals and Systems	3
		3
ENGR 343	Signais and Systems Lab	1
ENGR 348	and Applications	3
	Credits	15
Spring		
ENGR 328	Microcontrollers and	3
	Programmable Logic	
	Controllers	
ENGR 329	Microcontrollers and	1
	Programmable Logic	
	Controllers Lab	
ENGR 346	Electrical Power Systems	3
ENGK 434	Power Electronics	3
General Education		3
General Education		3
	Credits	16
Senior		
Fall		
ENGR 412	Communications	3
	Systems	
ENGK 462	Senior Design Project	3
I echnical Elective I		3
Technical Elective II		3
General Education		3
	Credits	15
Spring		
Technical Elective III		3
Technical Elective IV		3
General Education		3
General Education		3

General Education

Credits Total Credits 15 125

3

Technical Electives (choose any four):

- 1. ET 342 Supervisory Control and Data Acquisition (3 s.h.)
- 2. ET 400 Co-op/Internship in Engineering Technology (3 s.h.)
- 3. ET 415 Solar and Alternate Energy Systems (3 s.h.)
- 4. ET 360 Project Management (3 s.h.) or ENGR 334 Industrial Decision Processes (3 s.h.)
- 5. ENGR 402 Smart Cities: Engineering the Future (3 s.h.)
- 6. ENGR 414 Power System Analysis and Protection (3 s.h.)
- 7. ENGR 426 Wireless Communications (3 s.h.)
- 8. ENGR 428 Wireless Networks (3 s.h.)
- 9. ENGR 438 Microprocessors and Embedded Systems (3 s.h.)
- 10. ENGR 493 Special Topics in Electrical Engineering (3 s.h.)

Faculty

John F Katers; Professor; Ph.D., Marquette University* Patricia A Terry; Professor; Ph.D., University of Colorado, chair* Maruf Hossain; Associate Professor; Ph.D., University of Memphis Mohammad Mahfuz; Associate Professor; Ph.D., University of Ottawa Jagadeep Thota; Associate Professor; Ph.D., University of Nevada - Las Vegas Riaz Ahmed; Assistant Professor; Ph.D., University of South Carolina Kpoti (Stefan) Gunn; Assistant Professor; Ph.D., Ohio State University Michael Holly; Assistant Professor; Ph.D., University of Wisconsin - Madison Md Rasedul Islam; Assistant Professor; Ph.D., University of Wisconsin - Madison Jian Zhang; Assistant Professor; Ph.D., Mississippi State University Taskia Ahammad Khan; Lecturer; M.S., Bradley University

Nabila Rubaiya; Lecturer; M.S., University of Wisconsin - Milwaukee